Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Proteome Sci ; 16: 7, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29760588

RESUMO

BACKGROUND: The aminoglycoside antibiotic gentamicin is an ototoxic drug and has been used experimentally to investigate cochlear damage induced by noise.We have investigated the changes in the protein profile associated with caveolae in gentamicin treated and untreated spiral ligament (SL) pericytes, specialized cells in the blood labyrinth barrier of the inner ear microvasculature. Pericytes from various microvascular beds express caveolae, protein and cholesterol rich microdomains, which can undergo endocytosis and transcytosis to transport small molecules in and out the cells. A different protein profile in transport-specialized caveolae may induce pathological changes affecting the integrity of the blood labyrinth barrier and ultimately contributing to hearing loss. METHOD: Caveolae isolation from treated and untreated cells is achieved through ultracentrifugation of the lysates in discontinuous gradients. Mass spectrometry (LC-MS/MS) analysis identifies the proteins in the two groups. Proteins segregating with caveolae isolated from untreated SL pericytes are then compared to caveolae isolated from SL pericytes treated with the gentamicin for 24 h. Data are analyzed using bioinformatic tools. RESULTS: The caveolae proteome in gentamicin treated cells shows that 40% of total proteins are uniquely associated with caveolae during the treatment, and 15% of the proteins normally associated with caveolae in untreated cell are suppressed. Bioinformatic analysis of the data shows a decreased expression of proteins involved in genetic information processing, and an increase in proteins involved in metabolism, vesicular transport and signal transduction in gentamicin treated cells. Several Rab GTPases proteins, ubiquitous transporters, uniquely segregate with caveolae and are significantly enriched in gentamicin treated cells. CONCLUSION: We report that gentamicin exposure modifies protein profile of caveolae from SL pericytes. We identified a pool of proteins which are uniquely segregating with caveolae during the treatment, mainly participating in metabolic and biosynthetic pathways, in transport pathways and in genetic information processing. Finally, we show for the first time proteins associated with caveolae SL pericytes linked to nonsyndromic hearing loss.

2.
Rev. bras. hematol. hemoter ; 39(3): 202-209, July-Sept. 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-898927

RESUMO

Abstract Background l-Asparaginase is essential in the treatment of childhood acute lymphoblastic leukemia. If immunoglobulin G anti-l-asparaginase antibodies develop, they can lead to faster plasma clearance and reduced efficiency as well as to hypersensitivity reactions, in which immunoglobulin E can also participate. This study investigated the presence of immunoglobulin G and immunoglobulin E anti-l-asparaginase antibodies and their clinical associations. Methods Under 16-year-old patients at diagnosis of B-cell acute lymphoblastic leukemia confirmed by flow cytometry and treated with a uniform l-asparaginase and chemotherapy protocol were studied. Immunoglobulin G anti-l-asparaginase antibodies were measured using an enzyme-linked immunosorbent assay. Intradermal and prick skin testing was performed to establish the presence of specific immunoglobulin E anti-l-asparaginase antibodies in vivo. Statistical analysis was used to investigate associations of these antibodies with relevant clinical events and outcomes. Results Fifty-one children were studied with 42 (82.35%) having anti-l-asparaginase antibodies. In this group immunoglobulin G antibodies alone were documented in 10 (23.8%) compared to immunoglobulin E alone in 18 (42.8%) patients. Immunoglobulin G together with immunoglobulin E were simultaneously present in 14 patients. Children who produced exclusively immunoglobulin G or no antibodies had a lower event-free survival (p-value = 0.024). Eighteen children (35.3%) relapsed with five of nine of this group who had negative skin tests suffering additional relapses (range: 2-4), compared to none of the nine children who relapsed who had positive skin tests (p-value < 0.001). Conclusion Children with acute lymphoblastic leukemia and isolated immunoglobulin G anti-l-asparaginase antibodies had a higher relapse rate, whereas no additional relapses developed in children with immunoglobulin E anti-l-asparaginase antibodies after the first relapse.


Assuntos
Asparaginase , Imunoglobulina E , Imunoglobulina G , Escherichia coli , Leucemia-Linfoma Linfoblástico de Células Precursoras , Anticorpos Neutralizantes , Hipersensibilidade
3.
Rev Bras Hematol Hemoter ; 39(3): 202-209, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28830598

RESUMO

BACKGROUND: l-Asparaginase is essential in the treatment of childhood acute lymphoblastic leukemia. If immunoglobulin G anti-l-asparaginase antibodies develop, they can lead to faster plasma clearance and reduced efficiency as well as to hypersensitivity reactions, in which immunoglobulin E can also participate. This study investigated the presence of immunoglobulin G and immunoglobulin E anti-l-asparaginase antibodies and their clinical associations. METHODS: Under 16-year-old patients at diagnosis of B-cell acute lymphoblastic leukemia confirmed by flow cytometry and treated with a uniform l-asparaginase and chemotherapy protocol were studied. Immunoglobulin G anti-l-asparaginase antibodies were measured using an enzyme-linked immunosorbent assay. Intradermal and prick skin testing was performed to establish the presence of specific immunoglobulin E anti-l-asparaginase antibodies in vivo. Statistical analysis was used to investigate associations of these antibodies with relevant clinical events and outcomes. RESULTS: Fifty-one children were studied with 42 (82.35%) having anti-l-asparaginase antibodies. In this group immunoglobulin G antibodies alone were documented in 10 (23.8%) compared to immunoglobulin E alone in 18 (42.8%) patients. Immunoglobulin G together with immunoglobulin E were simultaneously present in 14 patients. Children who produced exclusively immunoglobulin G or no antibodies had a lower event-free survival (p-value=0.024). Eighteen children (35.3%) relapsed with five of nine of this group who had negative skin tests suffering additional relapses (range: 2-4), compared to none of the nine children who relapsed who had positive skin tests (p-value<0.001). CONCLUSION: Children with acute lymphoblastic leukemia and isolated immunoglobulin G anti-l-asparaginase antibodies had a higher relapse rate, whereas no additional relapses developed in children with immunoglobulin E anti-l-asparaginase antibodies after the first relapse.

4.
NPJ Aging Mech Dis ; 2: 16022, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28721274

RESUMO

Accumulation of DNA damage is intricately linked to aging, aging-related diseases and progeroid syndromes such as Cockayne syndrome (CS). Free radicals from endogenous oxidative energy metabolism can damage DNA, however the potential of acute or chronic DNA damage to modulate cellular and/or organismal energy metabolism remains largely unexplored. We modeled chronic endogenous genotoxic stress using a DNA repair-deficient Csa-/-|Xpa-/- mouse model of CS. Exogenous genotoxic stress was modeled in mice in vivo and primary cells in vitro treated with different genotoxins giving rise to diverse spectrums of lesions, including ultraviolet radiation, intrastrand crosslinking agents and ionizing radiation. Both chronic endogenous and acute exogenous genotoxic stress increased mitochondrial fatty acid oxidation (FAO) on the organismal level, manifested by increased oxygen consumption, reduced respiratory exchange ratio, progressive adipose loss and increased FAO in tissues ex vivo. In multiple primary cell types, the metabolic response to different genotoxins manifested as a cell-autonomous increase in oxidative phosphorylation (OXPHOS) subsequent to a transient decline in steady-state NAD+ and ATP levels, and required the DNA damage sensor PARP-1 and energy-sensing kinase AMPK. We conclude that increased FAO/OXPHOS is a general, beneficial, adaptive response to DNA damage on cellular and organismal levels, illustrating a fundamental link between genotoxic stress and energy metabolism driven by the energetic cost of DNA damage. Our study points to therapeutic opportunities to mitigate detrimental effects of DNA damage on primary cells in the context of radio/chemotherapy or progeroid syndromes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...